Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system

نویسنده

  • Jon Cafaro
چکیده

Animals often encounter large increases in odor intensity that can persist for many seconds. These increases in the background odor are often accompanied by increases in the variance of the odor stimulus. Previous studies have shown that a persistent odor stimulus (odor background) results in a decrease in the response to brief odor pulses in the olfactory receptor neurons (ORNs). However, the contribution of adapting mechanisms beyond theORNs is not clear. Thus, it is unclear how adaptive mechanisms are distributed within the olfactory circuit and what impact downstream adaptation may have on the encoding of odor stimuli. In this study, adaptation to the same odor stimulus is examined at multiple levels in the well studied and accessibleDrosophilaolfactory system. The responses of theORNs are compared to the responses of the second order, projection neurons (PNs), directly connected to them. Adaptation inPNspike rate was found to be much greater than adaptation in theORNspike rate. This greater adaptation allowsPNs to encode odor contrast (ratio of pulse intensity to background intensity) with little ambiguity. Moreover, distinct neural mechanisms contribute to different aspects of adaptation; adaptation to the background odor is dominated by adaptation in spike generation in bothORNs andPNs, while adaptation to the odor pulse is dominated by changes within olfactory transduction and the glomerulus. These observations suggest that the olfactory system adapts at multiple sites to better match its response gain to stimulus statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Psychophysical and behavioral characteristics of olfactory adaptation.

Sensory adaptation allows organisms to reach behavioral equilibrium with the ambient environment and respond primarily to changes in stimulation. Given its functional significance, it is not surprising that adaptation in the olfactory system exhibits many of the same characteristics as adaptation in other sensory systems, including vision. Repeated or prolonged exposure to an odorant typically ...

متن کامل

The Factors Associated With Olfactory Dysfunction in Patients with Multiple Sclerosis

Introduction: An impaired sense of smell has a remarkable impact on the quality of life. It is seen in a variety of neurodegenerative diseases such as Parkinson disease. In this study, we assessed the olfactory function in patients with Multiple Sclerosis (MS) by Sniff Magnitude Test (SMT).  Methods: A cross-sectional study was conducted on 48 patients with MS. A questionnaire, including demog...

متن کامل

Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila.

Olfactory adaptation is shown to occur in Drosophila, at both behavioral and physiological levels. In a behavioral paradigm, the extent of adaptation is shown to depend on the dose and duration of the adapting stimulus. Half-maximal adaptation occurred after 15 sec of exposure to an odor, and recovery occurred with a half-time of 1. 5 min, under a set of test conditions. Cross-adaptation was ob...

متن کامل

Cloning of the Gene Encoding M2e of Influenza Virus in B. subtilis

Background and Aims: The ectodomain of matrix protein of influenza virus is a weak immunogen that is highly conserved among all subtypes of influenza A virus. Tandem repeats of these genes along with linker were used to enhance immunogenicity of M2e protein and so it can be served as a universal vaccine in both humans and livestock. Materials and Methods: In this study, the sequences of extra-d...

متن کامل

Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila.

Animals actively seeking food and oviposition sites must integrate feedback from multiple sensory modalities. Here, we examine visual and olfactory sensorimotor interactions in Drosophila. In a tethered-flight simulator, flies modulate wingbeat frequency and amplitude in response to visual and olfactory stimuli. Responses to both cues presented simultaneously are nearly identical to the sum of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016